Changes in input strength and number are driven by distinct mechanisms at the retinogeniculate synapse.

نویسندگان

  • David J Lin
  • Erin Kang
  • Chinfei Chen
چکیده

Recent studies have demonstrated that vision influences the functional remodeling of the mouse retinogeniculate synapse, the connection between retinal ganglion cells and thalamic relay neurons in the dorsal lateral geniculate nucleus (LGN). Initially, each relay neuron receives a large number of weak retinal inputs. Over a 2- to 3-wk developmental window, the majority of these inputs are eliminated, and the remaining inputs are strengthened. This period of refinement is followed by a critical period when visual experience changes the strength and connectivity of the retinogeniculate synapse. Visual deprivation of mice by dark rearing from postnatal day (P)20 results in a dramatic weakening of synaptic strength and recruitment of additional inputs. In the present study we asked whether experience-dependent plasticity at the retinogeniculate synapse represents a homeostatic response to changing visual environment. We found that visual experience starting at P20 following visual deprivation from birth results in weakening of existing retinal inputs onto relay neurons without significant changes in input number, consistent with homeostatic synaptic scaling of retinal inputs. On the other hand, the recruitment of new inputs to the retinogeniculate synapse requires previous visual experience prior to the critical period. Taken together, these findings suggest that diverse forms of homeostatic plasticity drive experience-dependent remodeling at the retinogeniculate synapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of Receptor Desensitization and Saturation to Plasticity at the Retinogeniculate Synapse

The retinogeniculate synapse conveys visual information from the retina to thalamic relay neurons. Here, we examine the mechanisms of short-term plasticity that can influence transmission at this connection in mouse brain slices. Our studies show that synaptic strength is modified by physiological activity patterns due to marked depression at high frequencies. Postsynaptic mechanisms of plastic...

متن کامل

Activity Patterns Govern Synapse-Specific AMPA Receptor Trafficking between Deliverable and Synaptic Pools

In single neurons, glutamatergic synapses receiving distinct afferent inputs may contain AMPA receptors (-Rs) with unique subunit compositions. However, the cellular mechanisms by which differential receptor transport achieves this synaptic diversity remain poorly understood. In lateral geniculate neurons, we show that retinogeniculate and corticogeniculate synapses have distinct AMPA-R subunit...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Mechanisms Shaping Excitatory Transmission at the Developing Retinogeniculate Synapse

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Abstract The retinogeniculate synapse, the connection between retinal ganglion cells (RGCs) and thalamic relay neurons, undergoes extensive remodeling and refinement in the first few postnatal weeks. While many studies have focused on this process, little is known about t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 112 4  شماره 

صفحات  -

تاریخ انتشار 2014